- (3) (a) See ref 2, Chapters 6-10; (b) *ibid.,* Chapter 9, pp 181, 190; also see p 143.
- (4) J. K. Johanneson, *J. Chem. Soc.,* 2998 (1959). (5) W. **A.** Brungs, *J. Water Pollut. Control Fed.,* **45,** 2180 (1973).
-
- (6) J. D. Johnson and R. Overby, *J. Sanit. Eng. Diu., Am. Soc. Ciu. Eng.,* **97,** 617 (1970).
- (7) H. Galal-Gorchev and J. C. Morris, *Znorg. Chem.,* **4,** 899 (1965). (8) J. D. Johnson and R. Overby, *Anal. Chem.,* **41,** 1744 (1969).
-
- (9) L. Farkas, M. Lewin, and R. J. Bloch, *J. Am. Chem. Soc.*, 71, 1988 (1949). (10) M. Lewin and M. Avrahami, *J. Am. Chem. Soc.*, 77, 4491 (1955).
- (1 1) P. Engel, A. Oplatka, and B. Perlmutter-Hayman, *J. Am. Chem. Sor.,* 76, 2010 (1954).
- (12) C. F. Prutton and **S.** H. Maron, *J. Am. Chem. Soc.,* **57,** 1652 (1935).
- (13) H. A. Liebhafsky, and B. Makower, *J. Phys. Chem.,* **37,** 1037 (1933).
- "Standard Methods for the Examination of Water and Wastewater 13th ed, American Public Health Association, Washington, D.C., 1971, pp 112-116.
- (1 5) I. M. Kolthoff and R. Belcher, "Volumetric Analysis", Val. 3, Interscience, New York, N.Y., 1957, pp 449-473.
- (16) I. **M.** Kolthoff and J. J. Lingane, "Polarography", Vol. 11, 2d ed, In-terscience, New York, *K.Y.,* 1952, p 946.
- (17) **I.** M. Kolthoff and **K.** H. Furman, "Potentiometric Titrations: **A** Theoretical and Practical Treatise", Wiley, New York, N.Y., 1926.
- (18) I. M. Kolthoff and E. B. Sandeli, "Textbook of Quantitative Inorganic Analysis", Macmillan, New York, N.Y., 1946, p 557.
- (19) C. M. Kelley and H. V. Tartar, *J. Am. Chem. Soc.,* 78, 5752 (1956).

Contribution from the Departments of Chemistry, University of Michigan, Ann Arbor, Michigan, 48 104, and University of Utah, Salt Lake City, Utah 84112

Reactions of (Dimethylamido) halophosphorus(II1) with Aluminum(II1) Chloride and with Some Etherates of Aluminum(II1) Chloride

R. W. KOPP, A. C. BOND, and R. **W.** PARRY*

Receiued March 22, 1976

AIC60226K

The chloro(dimethylamido)phosphorus(III) ligands interact with AlCl₃ under appropriate conditions to give (CH₃)₂N-PC12.AICI3, ((CH3)2N)2PCl.AlC13, and [2((CH3)2N)2PCI].AlC13. **Tris(dimethylamido)phosphorus(III)** and AIC13 react under comparable conditions to give $((CH_3)_2N)_3P$ ¹AlCl₃. The tris ligand will also react with $((CH_3)_2N)_2PCl$ ¹AlCl₃ to give **((CH3)2N)3P.((CH3)2N)2PCl.AICl3** but it will *not* react with ((CH3)2N)jP-AlCI3 to give [2((CH3)2N)3P].AIC13. Trimethylamine will gradually replace some of the phosphorus ligand from the complex to give some $(CH_3)_3N·AICl_3$. A solution of **dichloro(dimethylamido)phosphorus(III)** ligand in isopropyl ether was stable as was **a** solution of aluminum chloride in isopropyl ether. On the other hand, an isopropyl ether solution containing A1C13 *and* the dichloro(di**methylamido)phosphorus(III)** ligand gave 1 mol of isopropyl chloride for each mole of PC13 and each mole of the dichloro(dimethy1amido)phosphorus ligand. The ether solution turned red as a result of the formation of an aluminum chloride-olefin complex. The splitting process to generate alkyl halide was not observed with diethyl ether. The chloride transferred came from the phosphorus ligand, not the AlCl₃. The ligand $((CH_3)_2N)_2PCl$ will displace about 70% of the diisopropyl ether from the diisopropyl etherate of AICl₃ and $((CH₃)₂N)₃P$ will displace 100% of the ether. Models to interpret these facts are presented.

The **(dimethylamido)halophosphorus(III)** ligands contain at least two quite different Lewis base centers. For example, the compound $((CH₃)₂N)₂PF$ contains *two* potentially basic nitrogen atoms and one potentially basic phosphorus atom. The site utilized in a given acid-base process is dependent upon the nature of the acid used. When borane fragments such as $BH₃, B₃H₇,$ and $B₄H₈$ are used as the acid, bonding is known to be through the phosphorus atom.¹⁻⁵ When other boron acids such as BF_3 , BCl_3 , or $B(CH_3)$ are used, evidence indicates probable bonding through a nitrogen atom.^{1-3,6,7} When aluminum alkyls are used as the acid, the behavior is more complicated. Clemens, Sisler, and Brey⁸ studied the reaction of $(CH_3)_2NP(CH_3)_2$ with $Al(C_2H_5)_3$. They reported that a P-A1 bond formed when the reagents were directly combined but that the structure changed to give an N-A1 bond when the adduct was heated.

In this work the reactions of (dimethy1amido)halophosphorus(III) ligands with $AICl₃$ have been studied. Although it was originally assumed that a conventional acid-base adduct would be formed, structures and stoichiometry turned out to be quite different from those originally visualized. 9 In this paper the appropriate chemistry is summarized. Subsequent reports will probe questions of structure and molecular dynamics.

The System (CH3)2NPF2-AlC13

Initial work with $(CH_3)_2NPF_2$ and AlCl₃ revealed a halogen-exchange process similar to that reported¹⁰ for the system $F_3P-AICI_3$. To eliminate complications resulting from halogen

*To whom correspondence should be addressed at the University of Utah.

interchange to give AlF₃, the chloro ligand, $(CH_3)_2NPCl_2$, was used in place of its fluoro couterpart.

The System $(CH_3)_2NPC1_2-AIC1_3$

When excess $(CH_3)_2NPCl_2$ and AlCl₃ were directly combined at 20 \degree C in the vacuum system, the following reaction occurred almost quantitatively in 0.5 h or less

 $2(CH_3)_2$ NPCl₂ + AlCl₃ \rightarrow ((CH₃)₂N)₂PCl·AlCl₃ + PCl₃

Even at a temperature of -23 °C some PCl₃ formed as soon as the reactants were brought into contact. The foregoing observations were quite unexpected, since the equilibrium constant for the disproportionation of the *free ligand* to give $((CH₃)₂N)₂PCl$ and PCl₃ has been estimated as 5×10^{-4} , and according to Van Wazer and Maier,¹¹ an equimolar mixture of PCl₃ and $((CH₃)₂N)₂PCl$ undergoes essentially complete conversion to $(CH_3)_2NPCl_2$ in less than 30 s at 25 °C; PCl₃ is definitely not an expected product.

An application of simple mass law arguments to the equation for the reaction of $(CH_3)_2$ NPCl₂ and AlCl₃ suggested the use of PCl₃ as a solvent to minimize PCl₃ formation and thus promote the formation of $(CH_3)_2$ PCl₂·AlCl₃. Indeed, the monoadduct $(CH_3)_2NPCl_2$ -AlCl₃ can be prepared from *equimolar* quantities of acid and base in PCl₃ at -23 °C, over a 12-h period. The pertinent equation is

$$
(\text{CH}_3)_2 \text{NPCl}_2 + \text{AlCl}_3 \xrightarrow{-23^\circ \text{C}, 12 \text{ h}} (\text{CH}_3)_2 \text{NPCl}_2 \cdot \text{AlCl}_3
$$

The solid 1:l adduct remaining after removal of the PCl3 solvent undergoes disproportionation upon standing at 25 °C. The products are $((CH₃)₂N)₂PCl·AlCl₃, PCl₃, and AlCl₃.$

Reactions of **(Dimethylamido)halophosphorus(III)**

About 20-30% of the relatively pure adduct was found to decompose in 8 days at *25* "C. The solid also reacts rapidly at 25 \degree C with excess ligand

 $(\mathrm{CH}_3)_2\mathrm{NPCl}_2\cdot\mathrm{AlCl}_3 + (\mathrm{CH}_3)_2\mathrm{NPCl}_2 \rightarrow ((\mathrm{CH}_3)_2\mathrm{N})_2\mathrm{PCl}\cdot\mathrm{AlCl}_3$ *t* PCl,

With trimethylamine a base displacement reaction occurs rapidly at 25 °C to give $(CH_3)_2NPCl_2$ and $(CH_3)_3N$. AlCl₃.

The System $((CH₃)₂N)₂PCl-AlCl₃$

Direct combination of $((CH₃)₂N)₂PCl$ and AlCl₃ in a 1:1 mole ratio gives $((CH₃)₂N)₂PCl·AlCl₃$ as a waxy solid which is identical in properties with the material prepared from $(CH_3)_2NPCl_2$ -AlCl₃ and $(CH_3)_2NPCl_2$ as described above. Reaction of $((CH₃)₂N)₂PCl·AlCl₃$ with trimethylamine gives $((CH₃)₂N)₂PCl$ and $(CH₃)₃N·AlCl₃$ in a regular base displacement process.

In a completely unexpected process $((CH₃)₂N)₂PCl·AlCl₃$ picks up a second mole of $((CH₃)₂N)₂PCl$ to give a stable 2:1 adduct $[2((CH₃)₂N)₂PCl]\cdot A!Cl₃$. The compound $((CH₃)₂$ - N)₂PCl·AlCl₃ will also pick up 1 mol of $((CH₃)₂N)₃P$ to give $((CH₃)₂N)₂PCl·((CH₃)₂N)₃P·AlCl₃$. These complexes containing 2 mol of ligand/mol of AlCl₃ were originally formulated9 as five-coordinate aluminum species by analogy to the known¹² structure of $((CH₃)₃N)₂$.AlH₃ and the proposed⁸ structure for $((C_6H_5)_2P)_2N(C_2H_5)$. Al $(C_2H_5)_3$ and related species. Subsequent work has eliminated the fivecoordinate model in favor of an ionic one which is described in the accompanying paper.

Condensation of excess phosphorus(II1) ligand onto a 2:l adduct such as $[2((CH_3)_2\overline{N})_2\overline{PC}$ l]. AlCl₃ simply dissolves the complex. The NMR spectrum showed distinct peaks for both the free and complexed ligand. No evidence for a 3:1 or higher adduct was found.

When PCl_3 is condensed onto $[2((CH_3)_2N)_2PCl]$. AlCl₃, halogen-amido group exchange occurs as shown by

 $[2((CH_3)_2N)_2PCl] \cdot AICl_3 + PCl_3 \rightarrow ((CH_3)_2N)_2PCl \cdot AICl_3$ $+ 2$ (CH₃)₂NPCl₂

The compound of composition $((CH₃)₂N)₃P·((CH₃)₂$ - N)₂PCl·AlCl₃ fumes in moist air. It can be held at 65 °C for 3 days in the vacuum system with no evidence of decomposition. After 2 days at 98 °C in the vacuum system, $P(NR_2)$ ₃ is driven off leaving a yellow residue.

The System $((CH₃)₂N)₃P-A₁Cl₃$

An excess of $((CH₃)₂N)₃P$ reacts with AlCl₃ to give only a one to one adduct, ((CH3)2N)3P*AlC13. *No* evidence for a double adduct comparable to $[2((CH_3)_2N)_2PCl]$ -AlCl₃ was ever found. This fact is very difficult to harmonize with the original five-coordinate aluminum model for $[2((CH_3)_2$ - N)₂PClI. AlCl₃ and was one of the key observations leading to new structural postulates.

Although $((CH₃)₂N)₃P·AIC₁₃$ will not pick up another mole of $((CH₃)₂N)₃P$, it *will* pick up 1 mol of $((CH₃)₂N)₂PCl$ to give the previously identified compound $((CH₃)₂N)₃P_•((C₊)))$ $\overline{H_3}$)₂N)₂PCl·AlCl₃. Addition of $(CH_3)_2NPCl_2$ to $((CH_3)_2$ - N)₃P.AlCl₃ appears to give halogen-amido interchange since the product is $[2((CH_3)_2N)_2PCl]$. AlCl₃. Similar halogenamido interchange is noted when PCl_3 is added to ((C- H_3)₂N)₃P.AlCl₃. The products recovered after 30 min are equimolar quantities of $(CH_3)_2N_2PCl·AICl_3$ and $(CH_3)_2N-$ PC₁.

Reactions **of** the **(Dimethylamido)halophosphorus(III)** Ligands with Aluminum Chloride Etherates

In early attempts to prepare **amidohalophosphorus(II1)** adducts of AlCl₃, diisopropyl ether was used as a solvent. Significant quantities of PCl₃ and isopropyl chloride were identified in the products. A solution of the (amido)halophosphorus(II1) in isopropyl ether was stable under the conditions used, as was a solution of pure aluminum chloride in this ether. These facts prompted a more thorough study of the isopropyl etherate of aluminum chloride and of its exchange reactions with (dimethylamido) halophosphorus(111) ligands.

The Diisopropyl Etherate **of** Aluminum Chloride. The di n -propyl etherate of AlCl₃ was first described as a red liquid in 1915,¹³ but the diisopropyl etherate of AlCl₃ prepared in this study was a white solid which showed no decomposition over a 3-day period in the vacuum system at 25 °C. In the presence of a trace of water it changed in a matter of a few hours to a moist yellow solid. After a few days a red liquid covering a red-brown solid appeared. These observations can be understood on the basis of literature records. A trace of water hydrolyzes the AlCl bond to liberate HC1. The HCl then attacks the ether to give some isopropyl chloride. The resulting isopropyl chloride will split out HCl in the presence of $AICI₃,¹⁴$ to give unsaturated hydrocarbons which complex with the $AICl₃$ to give a colored solution. The scarlet complex between AlC13 and an olefin was established by Burbage and Garrett,¹⁵ who reported the evolution of HBr when liquid n-butyl bromide was added to AlBr3. A scarlet liquid addition compound, 1-butene-aluminum bromide, was isolated and characterized by Burbage and Garrett.¹⁵ Thus the development of color in the higher etherates of aluminum chloride is a fairly sensitive criterion for ether decomposition. Further discussion on the etherates of aluminum chloride is available elsewhere. 16-18

Reaction **of** Phosphorus Trichloride with the Diisopropyl Etherate **of** Aluminum Chloride. Equimolar quantities of the diisopropyl etherate of AlCl₃ and PCl₃ were frozen at -196 $\rm ^oC$ and then warmed to 0 $\rm ^oC$ and held for 18 h in the vacuum line. The system turned red as expected. About a 1.07-mmol quantity of isopropyl chloride was separated for each millimole of PCl3 used. When excess trimethylamine was added to the remaining product after removal of the R-C1, 1 mol of $(CH₃)₃N$ was retained for each mole of AlCl₃ originally present, and $(CH_3)_2CHP(O)Cl_2$ was released. The latter compound had an infrared spectrum which was identical with the spectrum of an authentic sample.¹⁹ Equations which describe the foregoing observations are

 $((CH₃), CH), O·AICl₃ + PCl₃ \rightarrow (CH₃)₂CHCl$

+ $(CH_3)_2$ CHOPC l_2 ·AlC l_3

$$
(CH3)2CHOPCl2·AICI3 + (CH3)3N → (CH3)3N·AICI3 + (CH3)2CHOPCl2
$$

$$
(\text{CH}_3)_2\text{CHOPCl}_2 \longrightarrow (\text{CH}_3)_2\text{CHPO} \longrightarrow (\text{CH}_
$$

Arbusov rearrangement Very nearly 1 mol of chloride is transferred per mole of PCl3 used. The product $(CH_3)_2CHOPCl_2$ undergoes the expected Arbusov rearrangement in the presence of an alkyl halide. The red color of the product arises from the presence of the isopropyl chloride in the presence of AlCl₃ and the resulting generation of a small amount of red olefin-aluminum chloride

complex. It is significant that no isopropyl ether was found

in the products. Reaction **of (Dimethylamido)dichlorophosphorus(III)** with the Diisopropyl Etherate **of** Aluminum Chloride. When $(CH₃)₂NPCl₂$ was allowed to react with the diisopropyl etherate of aluminum chloride under conditions comparable to those used for PCl_3 (except reaction time was 7 h),¹⁹ nearly 1 mol of isopropyl chloride was formed for each mole of $(CH₃)₂NPCl₂$ used. Addition of excess $(CH₃)₃N$ to the products gave 1 mol of (CH₃)₃N.AlCl₃ for each mole of AlCl₃ originally used. As expected, the products were red, but no attempt was made to isolate the other expected substance, $((CH₃)₂CHO)P(NR₂)Cl$, or its rearrangement product. The

equations describing the foregoing observations are

 $((CH₃)₂CH)₂O·AICl₃ + (CH₃)₂NPCl₂ \rightarrow (CH₃)₂CHCl$

t (CH,),CHOP(N(CH,),)Cl*AlC13

 $(CH₃)₂CHOP(N(CH₃)₂)C₁AICl₃ + N(CH₃)₃$

 \rightarrow (CH₃)₃N.AlCl₃ + [(CH₃)₂CHOP(N(CH₃)₂)Cl]²⁸

Reaction of Bis(dimethylamido)chlorophosphorus(III) with the Diisopropyl Etherate of Aluminum Chloride. As expected from the foregoing result, the use of $((CH₃)₂N)₂PCl$ with the diisopropyl etherate of aluminum chloride generated a very small amount of isopropyl chloride. About **70%** of the original ether could be pumped slowly from the system, but evidence clearly suggested an unstable adduct involving the ether, the **bis(dimethylamido)chlorophosphorus(** 111), and the aluminum chloride.

Reaction of Tris(dimethylamido)phosphorus(III) with the Diisopropyl Etherate of Aluminum Chloride. When ((C- H_3 ₂N)₃P was mixed with ((CH₃)₂CH)₂O.AlCl₃ in a 1:1 mole ratio at -196 °C, then warmed to 0 °C, and held at 0 °C for *⁵*h, complete displacement of the ether resulted. The other product was $((CH₃)₂N)₃P·AIC₁₃$. As expected, no isopropyl chloride could be detected and no color was observed in the system.

The foregoing process is a straightforward base displacement process and contrasts sharply with the chlorination process observed with $(CH_3)_2NPCl_2$ and with PCl₃. In view of the foregoing facts it is concluded that the chloride of the alkyl chloride comes from the P-Cl, not the AlC13.

Reaction of (Dimethylamido)chlorophosphorus(III) with the Diethyl Etherate of Aluminum Chloride. It is known that diisopropyl ether undergoes cleavage more easily than does diethyl ether;²¹ thus the reaction of $(C_2H_5)_2O$. AlCl₃ and $(CH₃)₂NPCl₂$ was of interest. When an equimolar, homogeneous mixture of $(C_2H_5)_2O$ ·AlCl₃ and $(CH_3)_2NPCl_2$ was held at 0 °C for about 10 h and then fractionated, about 11% of the original ether was displaced and about 89% of the original phosphine was recovered. Only a trace of ethyl chloride was detected. As expected, the halide-transfer process is less facile with the diethyl etherate than with the diisopropyl etherate.

Experimental Section

General Procedures. Standard vacuum-line procedures²² were used throughout. Storage tubes and reaction tubes were equipped with greaseless Fischer-Porter 4-mm Teflon needle valves and were connected to the vacuum system with O-ring joints. Apiezon grease was used on other glass valves. All solid materials were handled under dry N_2 in a drybox.

Molecular weight estimates were made by dissolving a known amount of the sample (about 300 mg) in a known amount of CH_2Cl_2 (about 8 **8).** Vapor pressure at 0 "C was measured.

Infrared spectra were taken on a Perkin-Elmer 337 grating spectrometer. For gases a cell with KBr windows was used. Liquids were run as films on a KBr plate; solids were run in a KBr pellet. Nuclear magnetic resonance data were obtained using a Varian A-60, or a Varian HR-100 spectrometer. Detailed spectra, which provided the basis for all structural assignments, will be presented in the following paper.

Starting Materials. Commercial AlCl₃ (Baker and Adamson reagent grade) was purified by multiple sublimation in a stream of dry nitrogen. Malinckrodt reagent grade PCl₃ was condensed onto dry AlCl₃ and then fractionated through traps at -45 , -83 , and -196 °C. The -83 °C fraction was used. The $(CH_3)_3N$ was generated from (CH3)3NHC1 (Eastman) using 50% NaOH. The material was passed through a -83 °C trap into a -196 °C trap. The -196 °C fraction was used. Commercial reagent grade ethers were dried over CaH2. Methylene chloride was stored over Drierite. The (C- H_3)₂NPCl₂ was prepared by adapting the procedure of Burg and Slota²³ to vacuum-line techniques. Details are available elsewhere.⁹ The $((CH₃)₂N)₃P$ was prepared by an adaptation⁹ of the method of Holmes and Wagner.⁶ The $((CH₃)₂N)₂PC1$ was prepared by combining 2 mol of $((CH₃)₂N)₃P$ with 1 mol of PCl₃ in the vacuum

system at -196 °C. After warming of the mixture to 25 °C with stirring, the pure product (as determined by NMR: $\delta(^1H)$ -2.65 (TMS) ,²⁴ J_{PNCH} = 12.1 Hz,²⁴ δ (³¹P) -160 (H₃PO₄)²⁵) was obtained.

Reaction of Neat $(CH_3)_2NPC1_2$ with $AIC1_3$ -Synthesis of $((CH₃)₂N)₂PCI·AICI₃$ and PCI₃. A typical reaction out of many is described. A 5.15-mmol sample of $(CH_3)_2NPC1_2$ was condensed onto 1.09 mmol of pure dry AlCl₃ in the vacuum system at -196 °C. The reaction vessel and contents were then warmed to 0 "C and held for 20 h with occasional stirring. Fractionation of the volatile components gave 2.91 mmol of unreacted $(CH_3)_2NPCl_2$ and 1.06 mmol of PCl₃. The waxy, water-sensitive solid remaining in the tube (mp $60-65$ °C) had the overall formula $((CH₃)₂N)₂PCl·AlCl₃$. The detailed characterization of the compound is given under the description of the reaction of $((CH₃)₂N)₂PC1$ and AlCl₃. In separate studies to determine rate of the reaction it was found that an equilibrium pressure of PCl₃ was reached after 25 min at 25 °C.

Reaction **of** (CH3)2NPC12 with AIC13 Dissolved in PC13-Synthesis of $(CH_3)_2NPCl_2$ -AlCl₃. In one run a 2.67-mmol sample of AlCl₃ was suspended in 6.530 g (47.51 mmol) of PC13. A 2.53-mmol sample of $(CH_3)_2$ NPCl₂ was frozen at -196 °C above the AlCl₃-PCl₃ mixture. The system was warmed to -20 °C and held there for 9 h with occasional stirring. Fractionation of the volatiles pulled from the tube at -20 °C (-45 and -196 °C traps) produced 47.59 mmol of PCl₃ (-196 °C) and 0.28 mmol of $(\text{CH}_3)_2$ NPCl₂ (-45 °C). When the system was warmed to room temperature, the product was a clear, fairly mobile liquid, perhaps from solvent PCl₃ generated by decomposition of the original product. As this liquid stood for 8 days, more PCl₃ was generated. An 0.44-mmol sample of PCl₃ was pulled from the system. The product $(CH_3)_2NPCl_2$ AlCl₃ is clearly unstable and converts readily to $((CH₃)₂N)₂PCl·AlCl₃$ and PCl₃. This instability proved to be somewhat of a problem in studying the di**chloro(dimethylaniido)phosphorus(** 111)-aluminum chloride complex, but, as will be noted later, its decomposition could be followed and interpreted by use of NMR spectroscopy.

When an excess of $N(CH_3)$ ₃ (5.40 mmol) was condensed onto a 2.60-mmol sample of slowly decomposing $(CH_3)_2NPC1_2$ -AlCl₃ and the entire system was held for 18 h at 0 °C, volatile materials were obtained. Identified were 2.09 mmol of $N(CH_3)$ ₃ and 1.61 mmol of $(CH₃)₂NPCl₂$. The above facts suggest that about 60% of the original **(dimethylamido)dichlorophosphorus(III)** was displaced from the complex. The infrared spectra of the free ligand and the complex are summarized here. Assignments for the ligand are essentially those of Farran.²⁶ The order used is as follows: frequency in cm^{-1} , intensity $(s =$ strong, $w =$ weak, $m =$ medium, $v =$ very, $sh =$ shoulder), and probable assignment (with ν = stretch, ρ = rock, δ = deformation). While the spectrum of the gaseous ligand **is** compared here to the spectrum of the solid complex, Farran's²⁶ comparison of the spectra of solid and gaseous $(CH_3)_2$ NPCl₂ indicates that a comparison of gas and solid at this level of resolution is appropriate. As expected, the solid spectrum has additional lines. The spectrum for gaseous (CH3)2NPC12 is as follows: 2980 sh *(ucH,),* 2935 m *(vcH,),* 2860 sh (ν CH₃), 2810 mw (ν CH₃), 1480 m (δ CH₃), 1460 m (δ CH₃), 1290 m $(\nu_{\text{CNP}}), 1187 \text{ m } (\rho_{\text{CH}_3}), 1144 \text{ w } (\rho_{\text{CH}_3}), 1068 \text{ m} \text{w } (\rho_{\text{CH}_3}), 981 \text{ s } (\nu_{\text{CNP}}),$ 688 ms (ν_{NP}) , 530 ms (ν_{PC}), 508 vs (ν_{PC}), 456 s (ν_{PC}). For the solid complex $(CH_3)_2NPCl_2$ -AlCl₃, the spectrum is as follows: 2960 sh (ν_{CH_3}) , 2940 m (ν_{CH_3}), 2800 w (ν_{CH_3}), 1475 sh (δ_{CH_3}), 1450 m (δ_{CH_3}), 1410 sh (-), 1295 ms (ν_{CNP}), 1172 ms (ρ_{CH_3}), 1057 m (ρ_{CH_3}), 1009 sh (ν_{CNP}) , 984 vs (ν_{CNP}) , 860 w (-), 805 w (-), 712 mw, (ν_{NP}) , 690 $\text{in } (\nu_{\text{NP}}), 641 \text{ m } (-), 585 \text{ m}, \text{sh } (\nu_{\text{PCl}}), 500 \text{ vs } (\text{AlCl}), 430 \text{ m}, \text{sh } (-).$

Reaction **of** ((CH3)2N)2PCI with AICI3-Synthesis **of** $((CH₃)₂N)₂PCI-AlCl₃$. Equimolar amounts of resublimed AlCl₃ and $((CH₃)₂N)₂PC1$ were combined in the vacuum line using previously described techniques. A waxy solid formed.27 The molecular weight of the product as measured by vapor pressure depression of CH_2Cl_2 at 0 °C was 265 \pm 35. The theoretical value for a monomer is 289. Additional characterization data are discussed under "structure" in a subsequent paper.

The principal infrared frequencies of the free ligand were recorded by three separate investigators. Kopp recorded those of the neat liquid, Schultz recorded those of a CH_2Cl_2 solution, and Thomas recorded those of the liquid. In no case did the different spectra differ by more than ten wavenumbers. Lines were usually closer. The best values are summarized here using the same notation scheme that was outlined in the preceding section: 3000 w (ν C_{H3}), 2935 s (ν C_{H3}), 2900 s (ν C_{H3}), 2845 m sh (vcH,), 2805 m **(vcH,),** 1480 ms *(FcHJ,* 1450 **s** (~cH,), 1410 w sh (δ CH₃), 1280 s (ν CNP), 1194 s (ρ CH₃), 1160 sh (-), 1140 w (ρ CH₃),

Reactions of **(Dimethylamido)halophosphorus(III)**

1095 vw (-), 1062 m (ρ C_{H₃}), 980 sh (ν C_{NP}), 960 vs (ν _{CNP}), 880 mw (-), 790 w (-1,700 **ms** (VPN), 672 m (VPN), 510 sh (YPCI), 490 m **(VPCI),** 410 w (δ_{CNC}), 307 w (-).

For the solid complex $((CH₃)₂N)₂PCl·AlCl₃$ the frequencies and assignments are as follows: 2930 s (ν_{CH_3}) , 2815 m (ν_{CH_3}) , 2420 w $(-), 1585$ w $(-), 1475$ sh and 1450 s $(\delta_{CH_3}), 1410$ w $(\delta_{CH_3}), 1309$ s (ν_{CNP}) , 1220 sh (ν_{CNP}) , 1186 s (ρ_{CH_3}) , 1135 sh (-), 1003 sh (ν_{CNP}) , 996 vs **(VCNP).** 805 w (combn), 733 w (combn), 710 vw **(VPN),** 620 w (*v*_{PN}), 495 vs (*v*_{AlCl}), 437 w, sh (δ_{CNC}).

Reaction **of** ((Ck3)2N)2PCI with **((CH3)2N)2PCl.AICI3-Synthesis of the Diadduct** $[2((CH_3)_2N)_2PC]$ **AlCl₃.** If an excess of $((C-H_3)_2N)_2PC$ (3.83 mmol) is condensed onto pure AlCl₃ (0.78 mmol) and allowed to react at 0 °C for 18 h as previously described, the ratio of ligand to $AICI_3$ can be reduced to 2.15:1 by exposing the reaction vessel to the vacuum pumps. By flooding the product with hexane and pumping it off several times, we can reduce the ratio to 2.06:l. A pure product can be obtained by carefully combining the reagents in a 2:l ratio.

The solid white product melts over the range $118-123$ °C; it is soluble in methylene chloride and reacts vigorously with water vapor and almost explosively with liquid water. It has low solubility in benzene, hexane, chloroform, bromoform, and carbon tetrachloride. It molecular weight as determined by vapor pressure depression of CH₂Cl₂ at 0 °C was 430 \pm 60. A monomer would have the theoretical value of 443. The infrared spectrum of the solid 2:l adduct $[2((CH₃)₂N)₂PC1]$. AlCl₃ is given here using the same notation as that used in the preceding section: 2935 ms (ν_{CH_3}) , 2900 m (ν_{CH_3}) , $2850 \text{ w } (\nu \text{CH}_3)$, $2810 \text{ mw } (\nu \text{CH}_3)$, $1475 \text{ m sh } (\delta \text{CH}_3)$, $1455 \text{ m } (\delta \text{CH}_3)$, 1410 w sh (δ_{CH_3}) , 1300 s (ν_{CNP}), 1170 s (ρ_{CH_3}), 1140 w (ρ_{CH_3}), 1062 **s** (ρ CH₃), 1008 **s sh** (ν CNP), 984 vs (ν CNP), 745 mw (-), 692 w (ν NP), 668 m ($\nu_{\rm NP}$), 490 vs ($\nu_{\rm AIC}$), 437 w ($\delta_{\rm CNC}$).

Reactions of $((CH₃)₂N)₂PCI·AICI₃$ with Various Reagents-Synthesis of $((CH₃)₂N)₂PCl[*]((CH₃)₂N)₃P[*]AlCl₃. In general, reagents$ were condensed onto a sample of $((CH₃)₂N)₂PCl·AlCl₃$ in the vacuum system at -196 °C. The temperature was raised to 0 °C and held for periods ranging from hours up to 5 days. Volatile materials were then removed at 0° C and fractionated.

An excess of trimethylamine displaced less than half of the ligand in a single exposure. Removal of volatile materials followed by reexposure to the amine permitted recovery of up to 68% of the original $((CH₃)₂N)₂PCl$ in the complex.

A fourfold molar excess of $((CH₃)₂N)₃P$ was allowed to stand 5 days on the complex at 25 °C. When excess $((CH₃)₂N)₃P$ was pumped off, 1.07 mol of $((CH₃)₂N)₃P$ was retained for each mole of complex used.

Reaction of $((CN_3)_2N)_3P$ with AICl₃. In a typical run carried out as described earlier, a 2.11-mmol sample of AICl₃ reacted with 2.19 mmol of $((CH₃)₂N)₃P$. The complex appeared as an insoluble precipitate in liquid ligand if excess ligand were used. The adduct melted at $105-112$ °C and then decomposed to a dark brown solid. The molecular weight of the solid in methylene chloride (mole fraction of solute 0.127) at 0 °C was 320 \pm 50. The theoretical value for a monomer is 297.5. *It was of special significance that no evidence* for a complex with 2 mol of ligand/mol of AlCl₃ was ever found. Reaction of the complex with $((CH₃)₂N)₂PCl$ gave the previously described double adduct: $((CH₃)₂N)₃P_•((CH₃)₂N)₂PCI_•AICI₃.$ ⁽⁴⁾

Condensation of a 3.00-mmol sample of $(CH_3)_2NPCl_2$ onto 1.22 mmol of $((CH_3)_2N)_3P$ AlCl₃ at -196 °C followed by warming to room temperature gave evidence for the absorption of 1.12 mmol of $(CH₃)₂NPCl₂$. The facts are best summarized by the equation

$$
((\mathrm{CH}_3)_2\mathrm{N})_3\mathrm{P} \mathbin{:} \mathrm{AICl}_3 + (\mathrm{CH}_3)_2\mathrm{NPCl}_2 \rightarrow [2((\mathrm{CH}_3)_2\mathrm{N})_2\mathrm{PCl}] \mathbin{{\cdot}} \mathrm{AICl}_3
$$

When a large excess of PCl₃ (32.98 mmol) was condensed as before onto a 2.11-mmol sample of $((CH₃)₂N)₃P·AIC₁₃$, two liquid layers were visible about 30 min after the system had been warmed to room temperature. After 3 days fractionation of volatile products gave 1.76 mmol of (CH_3) ₂NPCl₂ and 30.98 mmol of PCl₃. The best equation to summarize these facts is

 $((CH₃)₂N)₃P·AICl₃ + PCl₃ \rightarrow ((CH₃)₂N)₂PCl·AICl₃$

 $+$ (CH₃), NPC₁,

Reaction **of** AICl3 with Isopropyl Ether. **A** 37.96-mmol sample of isopropyl ether was condensed at -196 °C onto a 1.45-mmol sample of AlCl₃. The system was warmed to 25 $^{\circ}$ C and the resulting suspension was stirred for 6 h. When excess ether was removed, a 1.45-mmol sample of AlC13 retained a 1.45-mmol quantity of ether. Table **I.** Reaction of the Diisopropyl Etherate of AlCl, with $((CH₃)₂N)_nPC1_{3-n}$ $(n = 0-3)$

 α In all cases reagents were mixed at -196 °C and warmed to 0 **"C,** where temperature **was** held for the time indicated.

Treatment of the residue with $(CH_3)_3N$ resulted in pickup of

1 mol of $(CH_3)_3N/mol$ of AlCl₃ and release of $((CH_3)_2CH)P(O)Cl_2$ as determined by infrared analysis.

The resulting dry white solid was stable for at least 3 days at room temperature. No evidence of isopropyl chloride or red color was found if reagents and system were scrupulously clean and dry.

Reaction of $((CH_3)_2CH)_2O$ **AlCl₃ with** $((CH_3)_2N)_nPCl_{3-n}$ *n* **= 0-3).** All reactions were carried out as described above. Results are summarized in Table **I.**

Reaction of $(CH_3)_2NPF_2$ **with AlCI₃.** When $(CH_3)_2NPF_2$ and AlCl₃ were mixed with a slight excess of ligand, a complex process occurred. About two-thirds of the $(CH_3)_2NPF_2$ appeared as $(CH_3)_2$ NPCl₂ and one-sixth as PF₃. In a typical run a 1.59-mmol sample of AlCl₃ and a 0.37-mmol sample of $(CH_3)_2NPF_2$ were condensed in the vacuum line at -23 °C. After 15 min the reaction mixture could not be condensed at -80 °C indicating the presence of PF₃. A total of 3.69 mmol of $(CH₃)₂NPF₂$ was added in three increments at -23 °C over a period of about 1 h; then the mixture stood for about 4 h at -23 °C. Fractionation of the products indicated that for 1.59 mmol of AlCl₃, 2.175 mmol of $(CH_3)_2NPF_2$ was consumed. A 1.369-mmol sample of $(CH_3)_2NPCl_2$ and a 0.24-mmol sample of PF₃ were obtained.

Acknowledgment. Support of this work by the National Science Foundation through Grant GP **32079** to the University of Utah and by a NASA Traineeship and Proctor and Gamble Fellowship to RWK at the University of Michigan is gratefully acknowledged.

Registry No. $((CH_3)_2N)_2PCl·AICl_3, 60607-14-9; (CH_3)_2NP-$ Cl₂.AICl₃, 60594-92-5; $[2((CH_3)_2N)_2PCl]$.AICl₃, 60594-85-6; **((CH3)2N)2PCl-((CH3)2N)3P-AlC13,60594-83-4;** ((CH3)2N)3P*AlC13, 60594-91-4; $((CH₃)₂CH)₂O·AlCl₃, 18785-84-7; (CH₃)₂NPCl₂,$ 683-85-2; AIC13,7446-70-0; ((CH3)2N)2PCl, 3348-44-5; (CH3)2NPF2, 8 14-97-1; PCl3, 77 19- 12-2.

References and Notes

- (1) (a) S. Fleming, Ph.D. Dissertation, University of Michigan, Ann Arbor, Mich., 1963; (b) S. Fleming and R. W. Parry, *Inorg. Chem.,* 11, 1 (1972).
- (2) M. D, LaPrade and C. E. Nordman, *Inorg. Chem.,* **8,** 1669 (1969).
-
- (3) H. Noth and H. J. Vetter, *Chem. Ber.,* 96, 1298 (1963). (4) R. *G.* Cavell, *J. Chem. SOC.,* 1992 (1964).
-
- (5) T. Reetz and B. Katlafsky, *J. Am. Chem. SOC.,* 82, 5036 (1960). (6) R. H. Holmes and R. R. Wagner, *J. Am. Chem.* **SOC.,** 84,357 (1962).
- (7) The existence of a B-N bond is **less** certain than the existence of the B-P bond, but data are still fairly convincing. (8) D. F. Clemens, H. H. Sisler, and W. S. Brey, *Inorg. Chem.,* 5,526 (1966).
-
- (9) R. W. Kopp, Ph.D. Dissertation, University of Michigan, Ann Arbor, Mich., 1966.
- (10) E. R. Alton, R. G. Montemayor, and R. W. Parry, *Inorg. Chem.,* 13, 2267 (1974).
- (11) J. R. Van Wazer and L. Maier, *J. Am. Chem. SOC., 86,* 811 (1964). (12) C. W. Heitsch, C. E. Nordman, and R. W. Parry, *Inorg. Chem.,* 2,508
- (1963).
- (13) G. B. Frankforter and **E.** A. Daniels, *J. Am. Chem. SOC.,* 37,2560 (1915).
- (14) E. Wertyporoch and T. Firla, *Z. Phys. Chem., Abt. A,* 162, 398 (1932).
- (15) J. J. Burbage and A. B. Garrett, *J. Phys. Chem.,* 56, 730 (1952).
- (16) F. Johnson, "Friedel-Crafts and Related Reactions", Vol. 4, G. Olah, Ed., Interscience, New Yoork, N.Y., 1963.
- (17) G. Urry, "The Chemistry **of** Boron and Its Compounds", E. Muetterties, Ed., Wiley, New York, N.Y., 1967, p 332.
- (18) P. Hagenmuller and J. Rauxel, C. *R. Hebd. Seances Acad. Sci.,* 247 (1958).
- (19) A. **M.** Kinnear and E. A. Perren, *J. Chem.* **SOC.,** 3437 (1952); L. J. Bellamy, "The Infra-red Spectra of Complex Molecules", Wiley, New York, N.Y., 1957, p 314.
- (20) Under the conditions used here about 11% of the original $(CH_3)_2NPCl_2$ was recovered unreacted. Depending on time and temperature this value varied from 0 to 25% of the amount used.
- (21) As pointed out in ref 16 an increase in the electron-releasing power of the R group of the ether facilitates ether cleavage. The isopropyl group is usually considered to be more electron releasing than the ethyl group.
- (22) D. F. Shriver, "The Manipulation of Air-Sensitive Compounds", McGraw-Hill, New York, N.Y., 1969.
- (23) **A.** B. Burg and J. Slota, *J. Am. Chem. Soc.,* **80,** 1107 (1958).
- (24) H. J. Vetter, *Naturwissenschuften,* **51,** 240 (1964).
- (25) **J.** K. Ruff, *J. Am. Chem.* Sac., **83,** 2835 (1961).
- (26) C. F. Farran, Ph.D. Dissertation, University of Michigan, Ann Arbor, Mich., 1966. Farran's high-resolution spectrum of *solid* (CH₃)₂NPCl₂ and his assignments are as follows: 3000.8 s (v'' _{CH3}), 2993.4 s (v'' _{CH3}),

2942.4 s (v''CH₃), 2922 m (v'CH₃), 2900.4 s (v'CH₃), 2878.3 m and 2864.9
m, sh (v'CH₃), 2841.2 s (-), 2809.4 s and 2796.7 m (v'CH₃), 1991.2 w
(1303 + 696), 1680.6 w (1303 + 392), 1487.2 s (δ ''CH₃), 1463.1 s 1451.4 s (δ'' _{CH3}), 1443.2 sh (-), 1440.8 s (δ _{CH3}), 1432.2 m (δ' _{CH3}), 1429.3 m (-), 1402.0 s (δ' _{CH3}), 1303.2 s and 1298.3 sh (ν' _{CN}), 1188.3 m (696 + 498), 1174.4 s (ρ' _{CH3}), 1138.6 w (ρ'' _{CH3}) $+498$), 1174.4 s (ρ'_{CH_3}) , 1138.6 w (ρ''_{CH_3}) , 1096.9 ms $(-)$, 1065.7 s and
1063.9 s (ρ''_{CH_3}) , 1029.5 w (696 + 335), 984.4 vs (ν'_{CN}) , 833.7 vw (498
+ 335), 731 vw (393 + 335), 696.5 s (ν'_{PN}) , 498.0 vs (ν'_{PC}) , + 335), 731 vw (393 + 335), 696.5 s ($\nu'p_N$), 498.0 vs ($\nu'p_C$), 437.2 vs
($\nu''p_C$), 392.5 vs (δ'' _{NC}), 335.2 s (ρ' _{NC}), 292.6 w (-), 220.2 m (Y'PN).

- (27) In an improved process developed by M. Thomas (Ph.D. Dissertation, University of Utah, Salt Lake City, Utah, 1975), it was found that a 15% **excess** of AlCl3 eliminated formation of any contaminating 2 1 adduct. The product can be purified by crystallization from CH_2Cl_2 at -10 °C.
- (28) Not isolated or identified; may rearrange.

Contribution from the Departments of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, and University of Utah, Salt Lake City, Utah 84112

Structure of $[2((CH_3)_2N)_2PC1]\cdot AIC1_3$ **,** $((CH_3)_2N)_3P((CH_3)_2N)_2PCl·AlCl_3$, and Related Species---Diphosphorus Cations

C. W. SCHULTZ and R. W. PARRY*

Received March 26, *1976*

AIC60237D

The bis-ligand adducts of AlCl₃, [2((CH₃)₂N)₂PCl]. AlCl₃ and $((CH_3)_2N)_3P$. ((CH₃)₂N)₂PCl. AlCl₃, form easily but have been difficult to describe in conventional acid-base formalism since the analogous bis adduct containing 2 mol of ((CH&N)3P/mol of AIC13 could *not* be prepared. Structures of all pertinent compounds now provide an explanation. The compound $[2((CH_3)_2N)_2PCl]$ -AlCl₃ is shown to have the structure $[((CH_3)_2N)_3P-P(N(CH_3)_2C)]^+[AlCl_4]^-$, while $((CH_3)_2N)_2PCl$ -AlCl₃ has the structure $[((CH_3)_2N)_3P-P(N(CH_3)_2)_2]^+[AlCl_4]^-$. These conclusions are based on conductivity data, NMR spectra for ¹H and ³¹P nuclei, infrared spectral data, and chemical information. The compound $((CH₃)₂N)₃P⁺AIC₁₃$ which will *not* add additional $((CH₃)₂N)₃P$ is shown to be a dimer with the initial structure $[((CH₃)₂N)₃P-P(N(CH₃)₂)₂]⁺[NR₂(AlCl₃)₂]⁻. The anion does not appear stable but undergoes further rearrangement.$ Apparent differences in chemistry are really due to the fact that the anion $[R_2NAlCl_3]^+$ picks up a second mole of AlCl₃ very easily. The $[GaCl_4]$ and $[PF_6]$ salts of the diphosphorus cation have been prepared, but we were not able to prepare $[((CH₃)₂N)₃P-P(N(CH₃)₂)F]⁺$ in which a fluoride ion is coordinated to one phosphorus atom of the cation.

In the first paper of this series' interactions between (di**methylamido)chlorophosphorus(III)** ligands and aluminum chloride were described. Conventional one to one addition compounds of the general formula $((CH₃)₂N)_nCl_{3-n}P·AlCl₃$ were reported along with *two* unexpected two to one addition compounds of formulas $[2((CH₃)₂N)₂PC1]\cdot AIC1₃$ and **((CH3)2N)3P-((CH3)2N)2PCl.AlCl3.** Since both of these compounds were quite stable if air and water were excluded, it was particularly puzzling that no two to one addition compound involving the closely related $((CH₃)₂N)₃P$ and AlC13 could be prepared. *All attempts to prepare [2-* $((CH_3)_3N)_3P$ $AlCl_3$ *have been singularly unsuccessful.* Structural answers to correlate the foregoing facts are provided in this paper.

While the original structural questions seemed to center around the matter of a phosphorus-aluminum bond vs. a nitrogen-aluminum bond, it soon became clear that models based on either premise were unsatisfactory. In contrast, an ionic representation analogous to the cation $[(CH_3)_3P-P (CH₃)₂$ ⁺ reported by Noth^{2a} and related species reported by Summers and Sisler^{2b} gave a satisfactory representation of all observed properties. The compound $[2((CH₃)₂N)₂PC1]\cdot A!Cl₃]$ is best described by structural formula I. The related

*Author to whom correspondence should be addressed at the University of Utah.

compound **((CH3)2N)3P-[(CH3)2N)2PCl-AlCl3** is best described by structural formula 11. The evidence to support

$$
\begin{bmatrix} N(CH_3)_2 & N(CH_3)_2 \ (CH_3)_2 \n\vdots & \vdots & \vdots \\ (CH_3)_2 NP & \vdots & \vdots \\ N(CH_3)_2 & N(CH_3)_2 & (L) \ (L) & (L) & (L) \end{bmatrix}^{\dagger} [AICl_4]^{\dagger}
$$

these assertions follows.

Conductivity Data

If an ionic formulation is a proper representation of the foregoing compounds, solutions of each substance in methylene chloride should be electrical conductors. This expectation has been verified. A 10^{-2} M solution of AlCl₃ in methylene chloride has an *equivalent conductance* of $0.21 \pm 0.01 \Omega^{-1}$ cm² equiv⁻¹. A comparable 10^{-2} M solution of $((CH₃)₂N)₂PC1$ has an equivalent conductance of less than 0.001 Ω^{-1} cm² equiv⁻¹. On the other hand, a 0.3 M solution of $[2((C H_3$)₂N)₂PCl] \cdot AlCl₃ has an equivalent conductance of 22.2 \pm 0.3 Ω^{-1} cm² equiv⁻¹. A simple ionic halide reference such as a 0.3 M solution of $[(C_6H_5)_4P]$ Cl in methylene chloride gave a value of $2.7 \pm 0.3 \Omega^{-1}$ cm² equiv⁻¹, and a reference covalent system such as $C_6H_4Br_2$ gave a conductance of 0.0008 Ω^{-1} cm² equiv-1 under comparable conditions. Clearly an ionic representation is appropriate.3

In the first paper of this series¹ a molecular weight value of 430 \pm 60 was obtained from vapor pressure depression measurements in $CH₂Cl₂$, while a theoretical value of 443 was expected for $[2((CH_3)_2N)_2PCl]$. The data would be consistent with a mildly dissociated ionic system (Structure I) in methylene chloride.